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CLATHRATES IN SEPARATION PROCESSES 

E. C. Makin 
Monsanto Polymers and Petrochemicals  Company 

St. Louis ,  Missour i  63166 

I. I n t r o d u c t i o n  

I n  t h e  f i e l d  o f  s e p a r a t i o n s  and p u r i f i c a t i o n ,  c l a t h r a t e  chem- 

i s t r y  has been neglected.  

p a r t ,  t o  t h e  lack o f  development of  adequate  a n a l y t i c a l  techniques.  

With X-ray d i f f r a c t i o n  developed, p e r f e c t e d  t o  a high degree  o f  

s o p h i s t i c a t i o n  and t h i s  tool now a v a i l a b l e  i n  many l a b o r a t o r i e s ,  

t h e  way is c l e a r .  

This  may be a t t r i b u t e d ,  a t  l e a s t  i n  

I n c l u s i o n  compounds a r e  now known i n  s e v e r a l  d i f f e r e n t  forms 

ranging  from s p h e r i c a l  c a v i t i e s ,  c a n a l - l i k e  s t r u c t u r e s ,  l a y e r  com- 

p lexes ,  c r y s t a l s  wi th  i n t e r c o n n e c t i n g  chambers and t u b u l a r  s t r u c -  

tures. Thus, a wide choice is  a v a i l a b l e  t o  accommodate a s p e c i f i c  

need o r  problem. 

Since,  i n  c e r t a i n  c o n d i t i o n s ,  very  l i t t l e  a t t r a c t i o n  is neces-  

s a r y  f o r  i n t e r m o l e c u l a r  compound formation,  many of  t h e  1/2 n2 pos- 

s i b l e  compounds may e x i s t .  As Powell noted,”  combining p a i r s  such 

as urea  and s t r a i g h t  c h a i n  p a r a f f i n s  a r e  most u n l i k e l y  p a r t n e r s  

from t h e  o r d i n a r y  chemical viewpoint  and may never  have been 

brought t o g e t h e r  w i t h  i n t e n t .  

A similar viewpoint  may be taken  w i t h  complex c l a t h r a t e s  o r  

gas hydrates .  However, once t h e  i n i t i a l  r e a c t i o n  i s  d iscovered  by 

des ign  o r  a c c i d e n t ,  l o g i c a l  e x t r a p o l a t i o n  t a k e s  over  and t h e  rami- 

f i c a t i o n s  are def ined.  F a i l u r e  to form a compound may be due t o  

u n s u i t a b l e  condi t ions .  For example, methanol or o t h e r  mutual s o l -  
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MAKIN 

vent  f o r  hydrocarbon and s a l t  i s  necessary  t o  e f f e c t  t h e  r e a c t i o n  

of  u r e a  w i t h  normal p a r a f f i n s .  

While hydrogen bonding may be a s s o c i a t e d  w i t h  some c l a t h r a t e s ,  

a c t i n g  as organic  molecular  s i e v e s ,  van d e r  Waals’ f o r c e s  may be 

s u f f i c i e n t  t o  induce compound formation.  C l a t h r a t e s  a r e  cons idered  

here  a s  i n c l u s i o n  o r  c a g e - l i k e  compounds a c t i n g  a s  molecular  s i e v e s  

but no t  e x h i b i t i n g  any s t r o n g  chemical  bonding. To reduce t h e  

scope of such a broad f i e l d ,  t h i s  p r e s e n t a t i o n  w i l l  be r e s t r i c t e d  

t o  more r e c e n t  advances i n  t h e  chemis t ry  of  c l a t h r a t e s  t h a t  can be 

formed and d i s s o c i a t e d  a t  w i l l .  

Methods o f  p r e d i c t i n g  c l a t h r a t i o n  c a p a b i l i t i e s  have not  been 

t o o  s u c c e s s f u l  due t o  t h e  f a c t  t h a t  c l a t h r a t e  h o s t s  o f t e n  assume a 

new l a t t i c e  s t r u c t u r e  i n  t h i s  c a p a c i t y  and c l a t h r a t e s  a r e  extremely 

s e n s i t i v e  t o  molecular  geometry of t h e i r  gues t  components. 

Many compounds remain t o  be found - some w i t h  c a p a b i l i t i e s  of 

s e p a r a t i n g  m a t e r i a l s  d i f f i c u l t  o r  impossible  t o  r e s o l v e  by any 

o t h e r  means. It i s  t h e  w r i t e r ’ s  hope t h a t  t h i s  b r i e f  d i s c u s s i o n  

w i l l  s t i m u l a t e  f u r t h e r  advances i n  a f a s c i n a t i n g  f i e l d ,  

11. Scope 

In t h e  p r e s e n t  d i s c u s s i o n ,  emphasis i s  placed on four  a r e a s  of  

c l a t h r a t e  chemistry:  

a .  Urea and t h i o u r e a  adducts  

b. Quinol s t r u c t u r e s  

c .  Hydrates  

d .  Werner complexes 

w i t h  p a r t i c u l a r  a t t e n t i o n  d i r e c t e d  t o  hydra tes .  

Molecular  i n t e r a c t i o n s  i n  comparison w i t h  o t h e r  condensed 

phases and t h e  p h y s i c a l  and thermodynamic p r o p e r t i e s  of c l a t h r a t e s  

have been considered i n  s e v e r a l  e x c e l l e n t  t e x t s  and reviews ,6,12915 

These reviews s e r v e  w e l l  a s  a base from which one can  develop t h e  

most r e c e n t  advances i n  a p p r o p r i a t e  d e t a i l .  
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CLATHRATES IN SEPARATION PROCESSES 

111. P r o p e r t i e s  of  t h e  C l a t h r a t e s  

It i s  p o s s i b l e  f o r  two chemical compounds, having no obvious 

means of chemical bonding, t o  form a new s t a b l e  c r y s t a l l i n e  molecu- 

l a r  compound. This  type of c r y s t a l l i n e  compound i n c l u d e s  t h e  urea  

and t h i o u r e a  complexes of  hydrocarbons, f a t t y  a c i d s ,  a l c o h o l s  and 

e s t e r s ,  molecular  compounds of  qu inol  w i t h  t h e  r a r e  gases ,  hydro- 

carbon h y d r a t e s  and h y d r a t e s  of  h a l i d e s ,  n i t r o g e n  compounds and 

oxygen c o n t a i n i n g  o r g a n i c  species12,15. 
C l a t h r a t e s  have been r e f e r r e d  t o  as organic  molecular  s i e v e s .  

Organic molecular  s i e v e s  are probably a misnomer. The phenomenon 

a s s o c i a t e d  w i t h  c l a t h r a t e  o r  cage compounds i s  n o t  l i m i t e d  t o  o r -  

ganic  spec ies .  However, emphasis i s  d i r e c t e d  t o  c l a t h r a t e s  of or -  

ganic  compounds i n  t h i s  d i scuss ion .  

C l a t h r a t e s  d i f f e r  from o t h e r  complex compounds, as  p r e v i o u s l y  

noted, i n  t h a t  t h e  molecules of t h e i r  components a r e  a s s o c i a t e d  

wi thout  o r d i n a r y  chemical bonding. I n  t h e s e ,  a s  well as l e s s  gen- 

e r a l i z e d  examples t h a n  t h o s e  c i t e d ,  t h e  s t a b l e  c r y s t a l l i n e  molecu- 

l a r  compound may u s u a l l y  be formed and d i s s o c i a t e d  by c o n t r o l l i n g  

t h e  p r e s s u r e  - temperature  r e l a t i o n s h i p  o f  t h e  r e a c t i o n  environment. 

Of even g r e a t e r  i n t e r e s t ,  i s  t h e  f a c t  t h a t  r e l a t i v e l y  small d i f f -  

e rences  i n  temperature  and p r e s s u r e  provide a means of  s i e v i n g  

molecular  s p e c i e s  d i f f e r i n g  i n  molecular  geometry as well as r e a c -  

t i v  i ty.  

The well known inorganic  molecular  s i e v e s  - z e o l i t e s  - a r e  

s i m i l a r  t o  c l a t h r a t e s  i n  t h a t  they d e r i v e  t h e i r  compound s e p a r a t i n g  

a b i l i t y  from a p r e c i s e l y  t a i l o r e d  molecular  geometry t h a t  provides  

channels  of  s p e c i f i c  molecular  dimensions. These channels  a r e  

h i g h l y  r e s t r i c t i v e  i n  t h e i r  s e p a r a t i n g  a b i l i t y .  F u r t h e r ,  they  a r e  

amenable t o  numerous a b s o r p t i o n  - d e s o r p t i o n  c y c l e s  b u t  r e q u i r e  

cons iderable  thermal  o r  o t h e r  energy t o  complete a cycle .  

Organic c l a t h r a t e s ,  be ing  c r y s t a l l i n e  compounds t h a t  possess  

r e g u l a r  geometr ic  s t r u c t u r e s  capable  of t r a p p i n g  o t h e r  molecules i n  

373 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



MAKIN 

t h e i r  c a v i t i e s ,  may a l s o  be considered a s  molecular  s i e v e s .  Table  

I compares the  geometry of i n o r g a n i c  and organic  cage s t r u c t u r e s .  

While by no means complete, the  examples c i t e d  d i s p l a y  a remarkable 

s i m i l a r i t y  of  molecular  geometry. 

They can be channel  type spaces  such a s  t h e  urea o r  t h i o u r e a  

adducts ,  c h o l i c  a c i d s ,  d e x t r i n  adducts  and d i n i t r o d i p h e n y l  adducts .  

Sheet  o r  layered i n c l u s i o n  compounds a r e  exempl i f ied  by c l a y  ab- 

s o r b a t e s  and cage i n c l u s i o n  compounds inc lude  t h e  water  cage hy- 

d r a t e s ,  hydroquinone c l a t h r a t e s  and cyano amines of c e r t a i n  

m e t  a 1s. " 9  26 

Molecular  a s s o c i a t i o n s  of cage systems r e p r e s e n t  extremes i n  

bond s t r e n g t h s  vary ing  from bonding e n e r g i e s  i n  t h e  low van der  

Waals' range t o  t h o s e  s u f f i c i e n t l y  s t r o n g  t o  be cons idered  coval -  

e n t .  

TABLE I -- 
S p a t i a l  P r o p e r t i e s  o f  Some Cage Systems 

Free Diameter 

of Cage i n  A 
0 

- System 

Hydroquinone-S02 C l a t h r a t e  5.2 
Hydroquinone - A r  C l a  t h r a t e  4.2 

Urea-n-Alkane Adducts 

Thiourea-Hydrocarbon Adducts 

Water C l a t h r a t e ,  Type I, Cage 1 

Cage 2 

Water C l a t h r a t e ,  Type 11, Cage 1 

Cage 2 
Z e o l i t e  4A, Cage 1 

Cage 2 

5.2 
6. 1 

5.2 

5.9 
4.0 

6.9 
7 

11.0 

Free Diameter of 

Cage o p e n i n g s 2  

sma 11 

sma 11 

5 .2  
6. 1 

s m a l l  

smal l  

sma 11 

3.2 

4.9 

- Ref. R. M. Bar rer ,  Nature 178, 1410 [1956] 
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CLATHRATES IN SEPARATION PROCESSES 

This  d i s c u s s i o n  w i l l  be r e s t r i c t i v e  but no t  e n t i r e l y  l i m i t e d  

t o  c a g e - l i k e  s t r u c t u r e s  t h a t  can be formed and d i s s o c i a t e d  wi th  

modest energy changes, These compounds provide a p o t e n t i a l l y  new 

f r o n t i e r  f o r  t a i l o r i n g  a c a g e - l i k e  s t r u c t u r e  t o  s o r t  molecules  on 

t h e  b a s i s  of  molecular  geometry. They may be e s s e n t i a l l y  non- 

r e a c t i v e  i n  the  c l a s s i c a l  chemical  sense  but  a r e  e a s i l y  prepared 

with simple equipment. Thus, whi le  most a r e  now l a b o r a t o r y  c u r i -  

o s i t i e s ,  many known compounds o f f e r  a cha l lenge  t o  t h e  b iochemis t ,  

chemist and chemical engineer  i n  t h e i r  p o t e n t i a l  use i n  s e p a r a t i o n  

processes .  

I V .  S t r u c t u r a l  Types and R e l a t i o n s h i p s  

I n c l u s i o n  compounds e x i s t  i n  s e v e r a l  forms depending on t h e  

molecular  a r c h i t e c t u r e  of t h e  h o s t  compound and t h e  geometry of  t h e  

c a v i t i e s  produced. 

The t u b e - l i k e  s t r u c t u r e s  of urea  and t h i o u r e a  complexes a r e  

w e l l  known. X-ray i n v e s t i g a t i o n s  of t h e  u r e a - n - p a r a f f i n  hydrocar-  

bon complexes show t h a t  t h e  urea  molecules  form a hol low channel  

j u s t  l a r g e  enough t o  accommodate t h e  p l a n a r  z igzag  of t h e  hydrocar-  

bon molecule2'. 

b a s i s  of  small d i f f e r e n c e s  i n  molecular  geometry has  been well  de- 

f ined .  I n  t h e  formation o f  cages around a molecule ,  s t r u c t u r a l  re- 

l a t i o n s h i p s  d i c t a t e  t h e  kind of  molecules  t h a t  w i l l  be enclosed.  

Molecules small enough t o  escape through a g iven  l a t t i ce  o r  frarne- 

work w i l l  no t  form i n c l u s i o n  compounds with it. A g u e s t  molecule 

must be p r o p e r l y  o r i e n t e d  a t  t h e  moment of  e n c l o s u r e  o r  it w i l l  no t  

f i t  and hence be excluded. 

Thei r  a b i l i t y  t o  s o r t  molecular  s p e c i e s  on t h e  

I n  g e n e r a l ,  molecules  of d i f f e r e n t  shapes tend t o  o r i e n t  them- 

s e l v e s  i n  such a way t h a t  they f i t  t o g e t h e r  and l a r g e  void  spaces  

a r e  seldom found. There a r e  no i n t e r a t o m i c  d i s t a n c e s  between 

a d j a c e n t  molecules  o f  dimensions less t h a n  o r  g r e a t l y  i n  e x c e s s  of  

t h e  van d e r  Waalsj r a d i i  sum. 
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T h i s  normal form of c r y s t a l  formation may be a l t e r e d  i n  s t r u c -  

t u r e s  where s e v e r a l  k inds  o f  i n t e r a t o m i c  f o r c e s  a r e  i n  opera t ion .  

When t h e  f o r c e s  a r e  s t r o n g e r  than van d e r  Waals, f o r c e s  a s  i n  t h e  

case  of  water ,  t h e  more open s t r u c t u r e  of  t h e  water  aggrega te  i s  

t h e  r e s u l t  of  s t r o n g  i n t e r a c t i o n  through hydrogen bonding between 

one oxygen atom and i t s  neighbors. 

Hydroquinone and water  c l a t h r a t e s  r e p r e s e n t  c a g e - l i k e  s t r u c -  

tu res  having v a r i a b l e  void spaces  w i t h  very  s m a l l  i n t e r c o n n e c t i n g  

a p e r t u r e s  o r  channels. 

of  l a t t i c e  f l e x i b i l i t y  w i t h i n  l i m i t s .  

I n  o t h e r  words, t h e y  do have t h e  c a p a b i l i t y  

Catechol  o r  hydroquinone can enc lose  smal l  molecules such as 

oxygen, xenon, s u l f u r  d ioxide ,  methanol, n i t r o u s  oxide o r  oxygen. 

C l a t h r a t e  formation depends on molecular  form r a t h e r  t h a n  on chemi- 

cal  bonding i n d i c a t e d  by t h e  f a c t  t h a t  t h e  i n e r t  gases  a r e  capable  

of  forming s t a b l e  quinol  complexes. Molecules thus  enclosed can be 

s t o r e d  f o r  a long t i m e  f r e q u e n t l y  a t  ambient temperature  and p r e s -  

sure. When d e s i r e d ,  t h e  c r y s t a l  framework can be des t royed  by 

e i t h e r  mel t ing  o r  d i s s o l v i n g  i n  a s u i t a b l e  so lvent .  The t rapped  

compound i s  thus  re leased .  

Hydroquinone complexes a r e  l inked  t o g e t h e r  by hydrogen bonds 

between oxygen atoms wi th  t h e  c a v i t i e s  bounded by hydroxyl  groups 

and t h e  benzene r i n g s  of  t h e  quinol  molecules. T h i s  system i s  de-  

p i c t e d  below: 

S i x  r e p e a t i n g  u n i t s  of  t h e  type  shown below form a quinol  cage 

about  4 i n  diameter. 

John F. Brown, Jr.,  S c i e n t i f i c  American Vol. 207 No. 1, 84 119623 
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CLATHRATES IN SEPAFATION PROCESSES 

Many water -so luble  subs tances  c o n t a i n  water  of c r y s t a l l i z a t i o n  

when they c r y s t a l l i z e  o u t  of s o l u t i o n .  Most of  t h e s e  s u b s t a n c e s  

a r e  n o t  c l a t h r a t e s .  

chemical bonds. 

Water molecules  a r e  a t t a c h e d  by t h e  usua l  

True h y d r a t e s  of  gases  and low b o i l i n g  l i q u i d s  f a l l  i n t o  two 

groups with p r o p e r t i e s  summarized i n  Table  11. 

TABLE I1 

Gas Hydrate S t r u c t u r e s  
-- 

- 

S t r u c t u r e  I 

C r y s t a l  System Cubic 

Unit  C e l l  Edge 8, 
Water Molecules/Unit C e l l  46 
Cages/Unit C e l l  8 

Number of Large Cages i n  Cel l  6 

Number of Small Cages i n  C e l l  2 

Hypothe t ica l  Formula s. 3 ~ .  23 H ~ O  

12.1 + 0.2 - 

Dia., 8,, Large Cages 5.9 

Dia., 8,, Small Cages 5.2 

Where S and L i n d i c a t e  small and 

l a r g e  c a v i t i e s  r e s p e c t i v e l y .  

S t r u c t u r e  I1 
Cubic 

17.2 - + 0.2 

136 

6.9 
8 

4.8 
16 

2 s. L. 17 H,O 

24 

Gas hydra te  s t r u c t u r e s  apply  t o  low molecular  weight  hydrocarbons,  

halohydrocarbons a s  w e l l  a s  c e r t a i n  c y c l i c  e t h e r s .  

X-ray c r y s t a l l o g r a p h i c  s t u d i e s  have shown t h a t  i n  t h e s e  c l a t h -  

r a t e s  t h e  water molecules a r e  l inked  t o g e t h e r ,  through hydrogen 

bonds, mostly i n  r i n g s  of f i v e  molecules r a t h e r  t h a n  t h e  r i n g s  of 

s i x  t y p i c a l  o f  o r d i n a r y  ice .  These f i v e  molecule r i n g s  are jo ined  

t o g e t h e r  forming dodecahedrons. I n t e r s t i t i a l  space r e s u l t s  s i n c e  

dodecahedrons cannot be placed i n  any arrangement t o  completely 

f i l l  a s p e c i f i c  void. 

Tr ia lkylsu l fonium s a l t s  and tetra-alkylammonium s a l t s  form 

hydra tes  similar i n  s t r u c t u r e  t o  t h e  gas hydra tes .  The compound 
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MAKI N 

2[nC4HsI3 S+F--40-H2O has  a c r y s t a l  l a t t i c e  s i m i l a r  t o  t h a t  of t h e  

'gas h y d r a t e  c o n t a i n i n g  46 water  molecules. 

2[i-C5H11]4 N+F-.76 H20 c o n t a i n s  68 per  c e n t  water  y e t  remains a n  

i c e  o r  hydra te  form u n t i l  hea ted  t o  88°F. 

Another example, 

The c r y s t a l l i n e  i n c l u s i o n  compounds formed by urea and t h i o -  
0 0 

urea a r e  a honeycomb-like s t r u c t u r e  of  about  5A and 7A r e s p e c t i v e l y .  
The l a r g e r  cage of t h i o u r e a  i s  due t o  the  g r e a t e r  s i z e  of  t h e  sul- 

f u r  atom compared to  oxygen l i n k i n g  t h e  ni t rogen-hydrogen bonds t o  

form t h e  h e l i x  around the  gues t  compound. 

Other compounds forming c a n a l - l i k e  s t r u c t u r e s  inc lude  desoxy- 

c h o l i c  a c i d ,  s t a r c h  and c y c l o d e x t r i n  d e r i v a t i v e s .  P r o t e i n s  a l s o  

form h i g h l y  hydra ted  c r y s t a l s  c o n t a i n i n g  a s  much a s  90% water.31 

Desoxycholic a c i d  forms unusual  combinat ions wi th  f a t t y  ac ids .  

T h e i r  composition depends upon t h e  number of  carbon atoms of  t h e  

f a t t y  a c i d  involved. 

Molecules Desoxycholic 

F a t t y  Acid Acid Required f o r  Adduct 

up t o  cs 4 
CS to c14 6 
C 1 5  and h igher  8 

-~ 

I n  a d d i t i o n  t o  f a t t y  a c i d s ,  acenaphthene, c h o l e s t e r o l ,  

xylene,  naphthalene,  hexaldehyde and camphor form complexes wi th  

desoxychol ic  acids7. 

The s t a r c h  i o d i n e  r e a c t i o n  a p p a r e n t l y  involves  i o d i n e  atoms 

jo ined  t o g e t h e r  t o  form a long, s t r a i g h t  po ly iodide  c h a i n  and t h e  

s t a r c h  molecule comprised o f  glucose u n i t s  i n  a polymeric c h a i n  

wraps around t h e  iod ine .  

On t h e  o t h e r  hand, c y c l o d e x t r i n s  are r i g i d ,  doughnut shaped 

molecules formed by j o i n i n g  g lucose  u n i t s  t o g e t h e r  i n  r i n g s .  Three 

c y c l o d e x t r i n s ,  c o n t a i n i n g  s ix ,  seven o r  e i g h t  glucose u n i t s ,  have 

i n t e r n a l  d iameters  o f  about  s i x ,  e i g h t  and t e n  Angstroms respec-  

t i v e  ly. 
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CLATHRATES IN SEPARATION PROCESSES 

Thus, these v a r i a t i o n s  i n  t h e  void  spaces  o f  t h e  s t r u c t u r e  

provide s u f f i c i e n t  d i f f e r e n c e s  t o  accommodate one s p e c i e  and ex-  

c lude  another .  

V. P r e p a r a t i v e  Methods 

A. Urea Adduction -- 
Laboratory methods and sca le -up  procedures  w i l l  be considered.  

I n  t h e  case  of  urea o r  t h i o u r e a  adduct ion,  t h e  s o l u t i o n - s l u r r y  s y s -  

tems have been adequate ly  descr ibed  i n  t h e  l i t e r a t u r e .  ' 
A t y p i c a l  l a b o r a t o r y  p r e p a r a t i o n  fo l lows:  

A 5-10 m l  sample of a hydrocarbon and 100 m l  of a s a t u r a t e d  

s o l u t i o n  of  urea i n  methanol a r e  r e a c t e d  by s t i r r i n g  o r  by a g i t a -  

t i o n  i n  a shaker .  I n  a t y p i c a l  case ,  decane i s  r e a c t e d  a t  20 t o  

2 5 O C  f o r  from twenty minutes t o  a n  hour o r  more depending upon t h e  

e f f i c i e n c y  of t h e  mixing system. 

The s o l i d  hydrocarbon urea  complex i s  c o l l e c t e d  on a s i n t e r e d  

g l a s s  funnel  and is  washed wi th  a urea-methanol s o l u t i o n  and t h e n  

with cyclopentane o r  cyclohexane t o  remove any adher ing  unreac ted  

hydrocarbon. The urea  complex may be d r i e d ,  p r e f e r a b l y  a t  about  

OOC, i n  a s t ream of n i t r o g e n  and t h e  hydrocarbon i s  recovered by 

d i s s o c i a t i n g  t h e  complex i n  a few ml of  70-90"C water. 

An aqueous s o l u t i o n  of  urea  may a l s o  be used b u t  f r e q u e n t l y  

has  t h e  d isadvantage  of forming emulsions o r  t h i c k ,  syrupy r e a c t i o n  

products  w i t h  high molecular  weight  hydrocarbons, a l c o h o l s ,  f a t t y  

a c i d s  and t h e  l i k e .  

I n  some cases  a n  aqueous s o l u t i o n  system may be s a t i s f a c t o r i l y  

employed by adding a low b o i l i n g  i n e r t  s o l v e n t  f o r  u n r e a c t i v e  

s p e c i e s  p r e s e n t  i n  t h e  sample be ing  processed. 

vents  such a s  methylene c h l o r i d e ,  e t h y l e n e  d i c h l o r i d e ,  chloroform 

and carbon t e t r a c h l o r i d e  a r e  p a r t i c u l a r l y  u s e f u l  i n  t h i s  regard  

with hydrocarbon systems be ing  separa ted .  

Halogenated s o l -  

The halogenated s o l v e n t  e x t r a c t s  unreac ted  material from t h e  

r e a c t i o n  mass and forms a d i s c r e t e  lower layer .  
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MAKIN 

However, a s o l i d  urea o r  t h i o u r e a  s l u r r y  may a l s o  be o f  v a l u e  

p a r t i c u l a r l y  where l a r g e  samples of  s e p a r a t e d  product  a r e  des i red .  

For example, 500 gms o f  c r y s t a l l i n e  urea a r e  thoroughly wet ted 

wi th  100 gms of dry  methanol and thoroughly mixed. 

added adductab le  hydrocarbon, f a t t y  a c i d ,  e t c .  i n  a n  i n e r t  s o l v e n t  

such a s  a naphthene o r  low molecular  weight i s o p a r a f f i n .  I n  s e p a r -  

a t i n g  normal p a r a f f i n s  from a mixed stream such a s  gas o i l ,  d i e s e l  

f u e l  o r  kerosene t h e  u n r e a c t i v e  s p e c i e s  i n  t h e  mixed s t ream s u f f i c e  

as a d i l u e n t .  

To t h i s  i s  

Adductable m a t e r i a l  i n  t h e  r e a c t i o n  mixture  i s  a d j u s t e d  t o  t h e  

fol lowing mole r a t i o  of  urea  t o  hydrocarbon cha in :  

m = O.65n + 1.5 
where m = moles of urea  i n  t h e  adduct  

n = number of carbon atoms i n  t h e  n-alkane. 

Adduction t a k e s  p lace  immediately a s  evidenced by a 3 t o  5°C 

temperature  r i s e  i n  a r e a c t i o n  of t h i s  type. 

f i n  i s  added t o  f a c i l i t a t e  removal of  unreac ted  spec ies .  A f t e r  

t e n  t o  t h i r t y  minutes r e a c t i o n  a t  2O-25"C, the  s l u r r y  i s  vacuum 

f i l t e r e d  on a Buchner funnel .  It i s  r e s l u r r i e d  i n  i s o p a r a f f i n ,  

f i l t e r e d ,  washed w i t h  100 cc of 2O-25"C i s o p a r a f f i n  and f i l t e r e d  

dry. The adduct  i s  d i s s o c i a t e d  by h e a t i n g  i n  1 l i t e r  of water  t o  

50°C. 

i a l  i n  95+% p u r i t y  i n  a s i n g l e  s tage .  

f i n s  of corresponding molecular  weight  co-adduct .  

The use of r e g e n e r a t a b l e  f i x e d  beds, on t h e  o t h e r  hand, has  

not  rece ived  t h e  a t t e n t i o n  i t  deserves .  Since urea  c r y s t a l s  ex-  

pand i n  t h e i r  accommodation of encapsula ted  s p e c i e s ,  p r o v i s i o n  

must be made f o r  t h i s  phenomena i n  the  development of a f i x e d  urea 

bed i n  o r d e r  t o  be usefu l .  S o l i d  t e t r a g o n a l  urea  has  a d e n s i t y  of 

1.33 compared t o  a d e n s i t y  of 1 .20  f o r  t h e  hexagonal n-alkane urea 

adduc t . 

A CB t o  C 8  i s o p a r a f -  

Yie lds  a r e  90 t o  98% of t h e  t h e o r e t i c a l l y  adductab le  mater- 

A t  C,, and h i g h e r ,  i s o p a r a f -  

The w r i t e r  and h i s  a s s o c i a t e s  developed a f i x e d  bed urea pro- 

c e s s  us ing  c r y s t a l l i n e  urea  d i s p e r s e d  on a n  i n e r t  f i b r o u s  support.14 
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CLATHRATES IN SEPARATION PROCESSES 

"Fibre-Frax" [aluminum s i l i c a t e  f i b e r s ]  and f i b e r  g l a s s  o r  

g l a s s  wool a r e  p r e f e r r e d .  R o l l s  o r  mats of i n s u l a t i n g  f i b e r  g l a s s  

have been s u c c e s s f u l l y  employed by i n s t a l l i n g  i n  t h e  p r e r e q u i s i t e  

t u b u l a r  r e a c t o r  of g l a s s  o r  metal  and leaching  t h e  g l a s s  mat f r e e  

of  commercial b i n d e r  wi th  a h o t  a romat ic  so lvent .  Fibrous a s b e s t o s  

i s  less d e s i r a b l e  due t o  i t s  l i n e a r  symmetry of f i b e r  compared t o  

random s t r u c t u r e s  of t h e  commercial m a t e r i a l s .  

Microphotographs of  t h e s e  two type s u p p o r t s  a t  120X a r e  shown 

i n  F igures  1 and 2. 

f i b r o u s  c a r r i e r s  does not  migra te  a p p r e c i a b l y  i n  s p i t e  of  t h e  f a c t  

t h a t  t h e  urea tends  t o  develop a s m a l l e r  c r y s t a l  a s  i t  undergoes 

s u c c e s s i v e  adduct ion  - decomposition cyc les .  

Urea d i s p e r s e d  i n  t h e  randomly d i s t r i b u t e d  

FIGURE 1. 

Fibrous Asbestos  120X 
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MAKIN 

FIGURE 2. 

"Fibre-Frax" 120X 

Urea i s  p r e c i p i t a t e d  i n  p lace  by p e r c o l a t i n g  a 70-90"C almost  

s a t u r a t e d  aqueous s o l u t i o n  through t h e  f i b e r  g l a s s  bed. The wet ted 

suppor t  i s  cooled t o  25-30°C thereby  c r y s t a l l i z i n g  out  a p o r t i o n  of 

t h e  a v a i l a b l e  urea but  s t i l l  c o n t a i n i n g  a cooled s a t u r a t e  aqueous 

s o l u t i o n .  The bed i s  then f lushed  with i sopropanol  t o  p r e c i p i t a t e  

ou t  a d d i t i o n a l  urea,  d i s t r i b u t e d  through t h e  suppor t  by washing out  

t h e  aqueous phase. The urea  bed i s  f i n a l l y  d r i e d  by a n i t r o g e n  

flow or o t h e r  i n e r t  gas. 

T y p i c a l l y  a urea  bed thus  prepared w i l l  c o n s i s t  of  8576 urea  

and 15% f i b e r  g l a s s  by weight and w i l l  c o n t a i n  about  13.3 l b s  of  

urea per  cubic  foot .  [ e l 3  gins per  l i t e r ]  
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CLATHRATES I N  SEPARATION PROCESSES 

I n  a t y p i c a l  case,  a hydrocarbon s t ream c o n t a i n i n g  t h e  d e s i r e d  

n-alkane was percola ted  through t h e  bed maintained a t  2O-25OC. 

Usual ly  1 t o  3 w t . $  methanol i s  inc luded  i n  t h e  hydrocarbon feed 

s t ream a s  a mutual s o l v e n t  s e r v i n g  a s  a n  a c t i v a t o r .  

Dry 9 9 4  isopropanol  i s  a l s o  e f f e c t i v e  p a r t i c u l a r l y  a t  2 t o  5 
w t . $  of t h e  mixed hydrocarbon charge t o  t h e  urea bed. * 

Unadducted hydrocarbon i s  washed out  of t h e  bed u s i n g  5 t o  10 

volumes of  wash l i q u o r  per  volume of adductab le  feed. 

low molecular  weight naphthenes or i s o p a r a f f i n s  a r e  p r e f e r r e d  hav- 

ing  a b o i l i n g  p o i n t  a t  l e a s t  40 t o  50°C lower t h a n  t h e  d e s i r e d  pro- 

duc t  t o  f a c i l i t a t e  s e p a r a t i o n  of t h e  unreacted s p e c i e s  from t h e  

wash l iquor .  

Here too ,  

F i n a l l y ,  adducted m a t e r i a l  i s  recovered by p a s s i n g  h o t  

to luene ,  methyl cyclohexane o r  o t h e r  non-adductable m a t e r i a l  

through t h e  bed a t  80 t o  100°C. 

d e s i r e d  s p e c i e s i s  s e p a r a t e d  by d i s t i l l a t i o n .  

The p e r c o l a t e  i s  recovered and t h e  

I n  a t y p i c a l  example, a r e a c t o r  was prepared by packing a 2" 

diameter  by 12" l e n g t h  of pyrex p ipe  wi th  a r o l l e d  b a t t  o f  f i b e r  

g l a s s  [5O gms]. A 70-9O"C almost  s a t u r a t e d  aqueous s o l u t i o n  of  

urea was p e r c o l a t e d  through t h e  f i b e r  g l a s s  packing and t h e  bed was 

allowed t o  cool  t o  room temperature .  This  was followed by a n  i s o -  

propanol wash which removed water  and p r e c i p i t a t e d  out  a d d i t i o n a l  

urea t o  y i e l d  approximately 200 gms of urea  d i s p e r s e d  q u i t e  u n i -  

formly throughout t h e  f i b e r  g l a s s  bed. 

Mixtures  conta in ing  adductab le  m a t e r i a l  t o  be s e p a r a t e d  a r e  

p e r c o l a t e d  through t h e  bed a t  20 t o  30°C followed by a s u i t a b l e  

wash l i q u i d  t o  remove occluded unreac ted  material. The d e s i r e d  

adducted s p e c i e  i s  recovered by t h e  a d d i t i o n  of a h o t  [ 9 O  t o  100°C] 

wash such a s  to luene  t o  d i s s o c i a t e  t h e  complex. A vacuum may be 

a p p l i e d  i n s t e a d  of  t h e  h o t  wash wi th  adducted material recovered i n  

a s u i t a b l e  low temperature  t r a p .  

While t h e  porous f i x e d  bed process  was developed p r i m a r i l y  f o r  

n-alkane recovery from mixed hydrocarbon systems,  any urea  adduct-  

a b l e  s p e c i e s  could be separa ted .  
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MAKIN 

Modif ica t ions  of t h i s  technique may be employed a s  a n  a n a l y t i -  

c a l  t o o l  and a s  a p r e p a r a t i v e  s e p a r a t i o n  column. Thus, s e p a r a t i o n  

of  complex mixtures  i n v o l v i n g  s p e c i e s  capable  of forming urea  o r  

t%iourea c l a t h r a t e s  a r e  performed i n  s imple equipment wi th  90% and 

b e t t e r  recovery of u n r e a c t i v e  compounds. 

Urea may a l s o  be d i s p e r s e d  s a t i s f a c t o r i l y  by adding t h e  appro-  

p r i a t e  amount of s o l i d  urea  t o  a sample of  F ibre-Frax  o r  g l a s s  wool 

broken down i n  a Waring blender .  Using co ld  pentane a s  a suspend- 

i n g  medium t h e  s l u r r i e d  urea - i n e r t  f i b r o u s  c a r r i e r  - is t r a n s -  

f e r r e d  t o  a s u i t a b l e  column f o r  use. Chromatographic s e p a r a t i o n s  

could be made i n  t h i s  fash ion  us ing  one of  s e v e r a l  a v a i l a b l e  tech-  

niques f o r  s l i c i n g  t h e  column and recover ing  t h e  adducted m a t e r i a l .  

Urea u t i l i z a t i o n  i s  u s u a l l y  40 t o  50% of t h e  t h e o r e t i c a l  i n  t h e  

case  of Clo - C15 n-alkanes.  

I n  a l l  cases ,  due t o  t h e  f a c t  t h a t  s o l i d  systems of urea o r  

th iourea  d i s p e r s i o n s  involve  r e a c t i o n  a t  t h e  c r y s t a l  s u r f a c e ,  a 

r e l a t i v e l y  high mole r a t i o  of  5 t o  1O:l of t h e  t h e o r e t i c a l  urea re- 

quirement i s  recommended i n  a n a l y t i c a l  type s e p a r a t i o n s .  Washing 

with a n  i n e r t  hydrocarbon such a s  i sopentane ,  neohexane and s i m i l a r  

hydrocarbons i s  p r e f e r r e d .  When handl ing  adductab le  s p e c i e s  wi th  a 

carbon cha in  o f  Clo o r  l e s s ,  h igher  r e s o l u t i o n  may be achieved by 

cool ing  t h e  wash l i q u i d  t o  5 o r  10°C.  

B. Hydrate C l a t h r a t i o n  

Hydrates  a r e  e a s i l y  prepared i n  p r e s s u r e  c e l l s  equipped wi th  a 

s u i t a b l e  a g i t a t o r  and a p p r o p r i a t e  a p e r t u r e s  f o r  t h e  i n t r o d u c t i o n  of 

reagents  and i n e r t  gases  t o  p r e s s u r i z e  the  r e a c t i o n  system. 

A 500 m l  c a p a c i t y  s t a i n l e s s  s t e e l  c e l l  designed and b u i l t  i n  

t h i s  l a b o r a t o r y  i s  shown i n  Figure 3 .  An exploded view i s  shown i n  

F igure  4, a s  w e l l  a s  a schematic  diagram d e p i c t e d  i n  F igure  5. 
A t t e n t i o n  i s  d i r e c t e d  t o  t h e  s i g h t - g l a s s  of  the  c e l l .  T h i s  i s  a 

4-1/2" by 1-5/16ii Macbeth A 1  g l a s s ,  11/16 of an inch t h i c k .  Pres-  

s u r e s  of 200 t o  300 p s i g  a r e  e a s i l y  and s a f e l y  accommodated by t h e  

appara t u s .  
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FIGURE 3. 
Cell for Clathrate Preparation and Equilibria Studies 
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MAKI N 

FIGURE 4. 

Exploded V i e w  of Cell  Used f o r  Clathrate Studies  
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CLATHRATES IN SEPARATION PROCESSES 

n 

I 

FIGURE 5. 

Apparatus f o r  E q u i l i b r i a  S t u d i e s  of C l a t h r a t e s  

Two methods f o r  prepar ing  h y d r a t e s  have been developed i n  t h i s  

l a b o r a t o r y ,  t h e  choice b e i n g  dependent on t h e  aqueous s o l u b i l i t y  of  

t h e  h y d r a t i n g  a g e n t  i n  ques t ion .  

Method I. 

Hydrates  of  v a r i o u s  Freons and o t h e r  a l k y l  h a l i d e s  a r e  pre-  

pared by adding wet - ice  t o  t h e  p r e s s u r e  c e l l  i n  a c o n s t a n t  tempera- 

t u r e  bath maintained a t  about  4 ° C  below t h e  c r i t i c a l  formation t e m -  

p e r a t u r e  o f  t h e  s p e c i f i c  hydra te  involved.  

Table  111 summarizes s e v e r a l  t y p i c a l  r e a g e n t s  and p r o p e r t i e s  

of  t h e i r  hydra tes .  These h y d r a t e s  a r e  r e l a t i v e l y  e a s y  t o  prepare  

and use i n  t h e  labora tory .  
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M A K I N  

TABLE 111 

P r o p e r t i e s  o f  Typica l  Hydrat ing Age% 

C r i t i c a l  Hydrate Prop. 

Name S t r u c t u r e  b. p. , O C  - T.,”C - Press .  , m m x  

Freon, F-11 CC lSF 25 6.5 410 

Freon, F-21 CHC 12F 8.9 8.7 760 

Methyl Bromide CH3Br 3.56 14.7 1141 

Tet rahydrofuran  64-66 

_- 
-- 

Freon, F-1426 CH3CFC12 9.6 13.1 1743 

The p r e s s u r e  c e l l  i s  evacuated a s  completely a s  p o s s i b l e  a t  

t h i s  predetermined temperature  [ u s u a l l y  l e s s  than  6 mm a b s o l u t e ]  

and t h e  primary h y d r a t i n g  agent  is added. I n  t h e  case  of  compounds 

having a b o i l i n g  p o i n t  above t h e  r e a c t o r  temperature ,  t h e  compound 

was charged v i a  a smal l  s t a i n l e s s  s t e e l  c y l i n d e r  and needle  va lves  

t o  c o n t r o l  t h e  flow of  t h e  reagent  t o  t h e  c e l l .  Ni t rogen was p r e f -  

e r a b l y  employed as a p r e s s u r i z i n g  gas f o r  t h e  charging tube. Where 

normally gaseous compounds were used a s  t h e  h y d r a t i n g  reagent  they  

were added a s  a gas from a smal l  c y l i n d e r  c o n t a i n i n g  t h e  p r e r e q u i -  

s i t e  amount of  h y d r a t e  former. 

The compounds t o  be s e p a r a t e d  a r e  added and the  r e s u l t a n t  s y s -  

tem was u s u a l l y  between 0 and 10 psig.  By a d j u s t i n g  t h e  p r e s s u r e  

v i a  n i t r o g e n  a d d i t i o n  t o  a p r e s s u r e  of up t o  50 p s i g  and/or  lower- 

i n g  t h e  temperature  2 t o  5°C near  t h e  c r i t i c a l  f o r  t h e  h y d r a t e  i n -  

duced e f f e c t i v e  s e p a r a t i o n s  of low molecular  weight  hydrocarbons 

such a s  C, and C5 compounds. 

Cold f i l t r a t i o n  of t h e  h y d r a t e s  u s i n g  a r e f r i g e r a t e d  jacke ted  

Buchner funnel  o r  s i n t e r e d  g l a s s  funnel  was found t o  be t h e  most 

e f f i c i e n t  technique f o r  handl ing  t h e  encapsula ted  spec ies .  

With systems normally gases  a t  ambient temperature  and pres-  

s u r e ,  t h e  unreacted m a t e r i a l  may be recovered by lowering t h e  p r e s -  
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CLATHRATES IN SEPARATION PROCESSES 

s u r e  t o  atmospheric. The c l a t h r a t e d  m a t e r i a l  may then  be recovered 

by r a i s i n g  t h e  temperature  about  5 o r  10°C t o  d i s s o c i a t e  t h e  

hydrate .  

Method 11. 

Hydrate forming a g e n t s  completely m i s c i b l e  i n  water  o r  n e a r l y  

so e x h i b i t  a mel t ing  poin t  change vary ing  cont inuous ly  wi th  compos- 

i t i o n .  Palmer has  s t u d i e d  such systems. l8 

S o l u t i o n s  of t h i s  type tend t o  subcool  and seeding  wi th  t h e  

hydra te  w i l l  f r e q u e n t l y  reduce subcool ing  from a n  8 o r  1 0 ° C  range 

down t o  a manageable 1 o r  2°C. 

Seed h y d r a t e  i s  obta ined  i n  t h e  c l a s s i c a l  manner. A few c c  

of  t h e  r e a c t i o n  mixture ,  such as a 77.5122.5 volume r a t i o  o f  water  

t o  t e t r a h y d r o f u r a n  is  added t o  a t e s t  tube ,  cooled below t h e  c r y s -  

t a l l i z a t i o n  p o i n t  of  t h e  h y d r a t e  and t h e n  a g l a s s  s t i r r i n g  rod i s  

rubbed g e n t l y  on t h e  i n s i d e  w a l l s  of  t h e  conta iner .  

A predetermined amount of water  and t h e  water  s o l u b l e  h y d r a t -  

i n g  agent  is cooled t o  wet i c e  t a n p e r a t u r e  [0 t o  +3"C] and t h e  s y s -  

t e m  i s  seeded i f  necessary.  Te t rahydrofuran  h y d r a t e ,  as  a n  example 

i s  e a s i l y  prepared by main ta in ing  a 77.5/22.5 volume r a t i o  of  water  

t o  t h e  organic  component. 

I n  both  methods of  h y d r a t e  p r e p a r a t i o n ,  n i t r o g e n  o r  hel ium has 

been used t o  s t a b i l i z e  t h e  h y d r a t e  formed by merely i n c r e a s i n g  t h e  

a b s o l u t e  p r e s s u r e  on t h e  system wi th  t h e s e  i n e r t  gases. 

only one o r  two atmospheres p r e s s u r e  s u f f i c e s .  

hydra te  and i s  of  such s i z e  t h a t  i t  i s  not  t rapped  by a h y d r a t e  

former. 

Usual ly  

N e i t h e r  gas forms a 

A very compact and e f f i c i e n t  appara tus  f o r  f r a c t i o n a t i n g  p a i r s  

of i n e r t  gases  wi th  gas  h y d r a t e s  h a s  a l s o  been d e s c r i b e d  by Barrer 

and Edge.3 

Thei r  work i n d i c a t e d  high s e p a r a t i o n  f a c t o r s  were a t t a i n a b l e  

a t  low temperatures  wi th  chloroform hydra tes .  
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MAKIN 

Res idua l  Gas C l a t h r a t e d  Gas 

V O ~ .  % Composition VOL % Composition 

92.3% A r  54.5% A r  
7.6% K r  45.4% K r  

F r a c t i o n a t i o n  

F a c t o r  
~~ 

T,OC 
-78 10.0 

9 4 . 6  A r  43.4% A r  - 30 21 

5.9% X e  56.5% Xe 
A number of o t h e r  s e p a r a t i o n s  a r e  c i t e d  i n  t h e  r e f e r e n c e  paper. 

C. Werner Complex C l a t h r a t e s  

Werner complexes have been found t o  form c l a t h r a t e s  wi th  v a r i -  

ous a romat ic  spec ies .  T a i l o r e d  s t r u c t u r e s  a r e  p o s s i b l e  t o  s e p a r a t e  

a romat ic  isomers of  mono - and p o l y - s u b s t i t u t e d  benzenes and naph- 

tha lenes .  DeRadzitsky and Hanotier'  have summarized a broad spec-  

trum of  a romat ic  s t r u c t u r e s  amenable t o  s e p a r a t i o n  us ing  n i c k e l  

th iocyanate  complexed with primary benzyl amine compounds of  t h e  

fo l lowing  t y p e s :  

H - C - R ~  

NH2 

I 
?I-C-Rl 

R, = primary a l k y l  group R, = H o r  a primary a l k y l  group 

R2 = Various s u b s t i t u e n t s  

R2 may be p o l a r  o r  non-polar  i n  any p o s i t i o n  on t h e  r ing.  

S t rongly  a c i d i c  o r  b a s i c  groups f o r  Rz such a s  -S03H, -NH2 and 

some r e a c t i v e  groups such a s  R should be avoided. 
-C-H 
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CLATHRATES IN SEPARATION PROCESSES 

Complex P r e p a r a t i o n  

A t y p i c a l  p r e p a r a t i o n  a s  recommended by DeRadzitsky and 

Hanotier’ fol lows : 

“A s o l u t i o n  of  0.2 mole of NiISCN], i s  formed by double  decom- 

p o s i t i o n  of  47.5 grams of N i C 1 2 * 6 H 2 0  [0.2 mole] and 38.9 grams 
o f  KSCN [0.4 mole] i n  100 m l  of  d i s t i l l e d  water  - 100 m l  o f  

heptane is  added t o  t h i s  aqueous s o l u t i o n .  To t h i s  two-phase 

mixture  i s  added, wi th  s t i r r i n g ,  114.8 m l  o f  M-methyl  benzyl-  

amine [O.g mole - t h a t  i s ,  a 12$ excess  over  t h e  s t o i c h i o m e t -  

r i c  q u a n t i t y ]  d i s s o l v e d  i n  100 m l  o f  heptane. A f t e r  s t i r r i n g  

f o r  15 minutes ,  t h e  r e s u l t i n g  b lue  p r e c i p i t a t e  i s  s e p a r a t e d  by 

f i l t r a t i o n ,  washed w i t h  a mixture  of  200 m l  of  heptane and 100 

m l  of  water and d r i e d  under vacuum a t  room temperature .”  

The same p r e p a r a t i v e  procedure can be used f o r  a v a r i e t y  o f  

complexes. S e p a r a t i o n  of  a compound by c l a t h r a t i o n  i s  convenient ly  

accomplished by h e a t i n g  t h e  te t ramine  complex i n  suspens ion  i n  t h e  

mixture  t o  be c l a t h r a t e d .  Cool ing t o  form t h e  c l a t h r a t e ,  followed 

by washing, dry ing  and low p r e s s u r e  s team s t r i p p i n g  y i e l d s  t h e  

c l a t h r a t e d  spec ies .  

d e s t r u c t i o n  o f  t h e  t e t r a m i n e  complex and provides  f o r  a c y c l i c  pro-  

c e s s  a s  shown below: 

C o n t r o l l i n g  t h e  s t r i p p i n g  temperature  avoids  

Complexes of  meta l  s a l t s  and s u b s t i t u t e d  p y r i d i n e s  have been 

thoroughly d i s c u s s e d  by S c h a e f f e r  and Dorsey. 23 

For example, Ni[SCNI2 i s  formed by double decomposi t ion o f  

NiC1,  6 ~ ~ 0  and KSCN. 

molar aqueous s o l u t i o n  of  t h e  n i c k e l  s a l t .  

*-methyl benzylamine i s  added t o  t h e  heptane s o l u t i o n .  A f t e r  

s t i r r i n g  a few minutes  a p r e c i p i t a t e  of  t h e  amine s a l t  i s  formed 

which is  separa ted  by f i l t r a t i o n ,  washed wi th  heptane and d r i e d .  

An e q u a l  volume of heptane i s  added t o  a 2 

A 10% molar excess  of  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



W I N  

The complex i s  e a s i l y  u s e d  f o r  s e p a r a t i n g  a romat ic  hydrocar-  

bons and halogen d e r i v a t i v e s  of benzene. 

suspended i n  t h e  mixture  t o  be c l a t h r a t e d ,  warmed t o  induce s o l u -  

t i o n  and cooled t o  form t h e  c l a t h r a t e  which may be washed w i t h  a n  

i n e r t  s o l v e n t  such a s  pentane, hexane and t h e  l i k e .  C l a t h r a t e d  

s p e c i e s  may be recovered by decomposition with aqueous H C 1  and 

e x t r a c t i n g  t h e  organic  phase with pentane,  hexane, e t c .  I f  s u f f i c -  

i e n t l y  l a r g e  samples of c l a t h r a t e  a r e  involved t h e  c l a t h r a t e d  mat- 

e r i a l  may be recovered a s  a d i s c r e t e  phase. 

The t e t r a m i n e  complex i s  

V I .  Appl ica t ion  and Uses 

The wide v a r i e t y  of  c l a t h r a t i n g  m a t e r i a l s  capable  of func t ion-  

i n g  as organic  molecular  s i e v e s  and r e a d i l y  a v a i l a b l e  t o  t h e  r e -  

search  i n v e s t i g a t o r  o r  t h e  process  des ign  engineer  s u g g e s t s  a broad 

spectrum of p o t e n t i a l  a p p l i c a t i o n .  

C l a t h r a t e  and channel-forming compounds e x h i b i t  a high degree 

of  s e l e c t i v e  e n c a p s u l a t i o n  and, i n  some cases ,  q u a n t i t a t i v e  s e p a r a -  

t i o n  of  a p a r t i c u l a r  component o r  c l a s s  of  m a t e r i a l  passed over  

them o r  contac ted  i n  a s p e c i f i c  manner. 

For example, Kre5 may be occluded i n  a hydroquinone c l a t h r a t e  

while  SFB may be s t o r e d  i n  t h e  c l a t h r a t e  s t r u c t u r e  of Dianin’s com- 

pound and r e l e a s e d  l a t e r  under c o n t r o l l e d  condi t ions .  

Low molecular  weight a l i p h a t i c  hydrocarbons may be t r a n s p o r t e d  

and s t o r e d  i n  a water  h y d r a t e  form. 

The use of  urea  adducts  t o  s e p a r a t e  o p t i c a l  isomers has been 

s t u d i e d  r a t h e r  thoroughly.  This  i n t e r e s t i n g  a p p l i c a t i o n  i s  d e -  

s c r i b e d  i n  some d e t a i l  below, 

A. Urea and Thiourea Adducts 

I n  a d d i t i o n  t o  c l a s s i c  s e p a r a t i o n s  of s t r a i g h t  c h a i n  compounds 

with urea ,  t h i s  i n t e r e s t i n g  s a l t  has  been used t o  s t u d y  conf igura-  

t i v e  r e l a t i o n s h i p s  of s t e r i c  s e r i e s .  27 
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CLATHRATES IN SEPARATION PROCESSES 

The hexagonal urea  l a t t i c e  can occur  i n  two s t e r e o - i s o m e r i c  

forms. A l e f t -handed  o r  r ight-handed h e l i x  may form. I f  c r y s t a l -  

l i z a t i o n  is l e f t  t o  chance, both h e l i x  forms occur  toge ther .  

S ~ h l e n k * ~  h a s  s t u d i e d  t h i s  phenomenon i n  some d e t a i l .  A s  a n  i n t e r -  

e s t i n g  example, i f  e thyl-alpha-methyl  b u t y r a t e  is r e a c t e d  wi th  urea 

t o  form a n  adduct ,  t h e  e t h y l [ + ]  a lpha-methyl  b u t y r a t e  i s  p r e f e r e n -  

t i a l l y  adducted by t h e  r ight-handed c r y s t a l s .  This  i s  expla ined  by 

t h e  author27 a s  a resu l t  of t h e  shape of  t h e  d e x t r o r o t a t o r y  mole- 

c u l e  f i t t i n g  b e t t e r  i n t o  t h e  urea h e l i x  than t h e  l e v o r o t a t o r y  mole- 

cule .  

Rodel l  and Brodman have s t u d i e d  t h e  urea i n c l u s i o n  compounds 

of  a l k e n o i c  a c i d s  and t h e i r  e s t e r s .  21 T h e i r  o b s e r v a t i o n s  i n d i c a t e d  

t h a t  3-n-hexenoic and 3-n-oc tenoic  a c i d s  do not  form urea  i n c l u s i o n  

compounds. They noted t h a t  a l l  o t h e r  a l k e n o i c  a c i d s  d i f f e r e d  from 

t h e s e  two by t h e  presence of a double bond i n  t h e  2-pos i t ion .  This  

t r e n d  had been observed i n  e a r l i e r  s t u d i e s  of  a lkynes.22 

The t r i p l e  bond d i d  n o t  prevent  complex formation i n  1-2- o r  

3-nonyne and 2-  and 3-decyne b u t  d i d  prevent  complex format ion  i n  

4-nonyne and 5-decyne. S ince  a l l  t h e  3-a lkenoic  a c i d  es ters  formed 

urea complexes, t h e  a l k y l  groups of t h e  e s t e r  a p p a r e n t l y  g i v e  added 

van der  Waals’ s t a b i l i z a t i o n .  

Recent ly  Russian workers s t u d i e d  

of  p i p e r y l e n e  i n  urea  complexes. l3 

I n f r a r e d  s p e c t r a  of urea encapsu 

only  t h e  t r a n s  - [1,4 + 1,2] - u n i t s .  

t h e  r a d i a t i o n  polymer iza t ion  

a t e d  polypipery lene  i n d i c a t e d  

R e s t r i c t i o n s  of  t h e  c a n a l  

sugges t  t h e  1 , 4  t r a n s  c o n f i g u r a t i o n  t o  be t h e  most probable. 

CH3 

t r a n s  1,4 t r a n s  1,2 
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MAKIN 

Although t h e  gues t  molecules i n  a c a n a l  complex, such as u r e a ,  

a r e  i n a c c e s s i b l e  t o  e x t e r n a l  a t t a c k  by reagents  wi thout  breaking  
down t h e  c a n a l - l i k e  s t r u c t u r e ,  they  a r e  capable  o f  i n t e r a c t i o n .  

R e s u l t s  of t h e  i r r a d i a t i o n  experiments  i n d i c a t e d  much h i g h e r  

y i e l d s  of  po lypipery lene  from c a n a l  polymerizat ion than t h e  y i e l d  

from r a d i a t i o n  polymer iza t ion  i n  bulk  a t  t h e  same temperature .  

A f u r t h e r  important  observa t ion  was t h a t  t h e  degree of unsa t -  

u r a t i o n  was somewhat h igher  i n  t h e  r a d i a t i o n  polymer iza t ion  of  

p ipery lene  i n  urea  complexes [95-98$] compared t o  t h e  u n s a t u r a t i o n  

of bu lk  polymers [84-88$]. This  sugges ts  t h a t  t h e  urea adduct  

molecular  template  minimized o r  excluded c y c l i z a t i o n .  

Butadiene i n  urea ,  when i r r a d i a t e d  w i t h  a one-mi l l ion-e lec t ron  

v o l t  beam of e l e c t r o n s ,  a l s o  produced e x c l u s i v e l y  1,4 t r a n s  poly- 

butadiene.§ 

Selenourea adducts  analagous t o  urea and t h i o u r e a  i n c l u s i o n  

compounds have been descr ibed.29 

diameter  between th iourea  and se lenourea  adducts  i s  small ,  t h e  

l a t t e r  appears  t o  be much more s e l e c t i v e  p a r t i c u l a r l y  w i t h  g e m e t -  

r i c  isomers ,  

Though t h e  d i f f e r e n c e  i n  channel  

Thiourea e x h i b i t e d  no p r e f e r e n c e  between t h e  c i s  and t r a n s  

isomers of 1- t-butyl-4-neopentylcyclohexane whereas se lenourea  

formed a n  adduct  w i t h  t h e  t r a n s  isomer but not  t h e  c i s , t h u s  provid-  

ing a s e p a r a t i o n  of  t h e  two isomers. 

- B. Hydrate C l a t h r a t i o n s  

While hydra te  c l a t h r a t e s  may be used t o  s e p a r a t e  r a r e  gases ,  

a l p h a t i c  hydrocarbons, halo-alkanes and t h e  l i k e ,  they  o f f e r  an in-  

t r i g u i n g  cha l lenge  i n  o t h e r  f i e l d s .  

Hydrate format ion  has been suggested a s  t h e  p o s s i b l e  anes- 

t h e t i c  a c t i o n  of c e r t a i n  gases  such as chloroform and cyclopropane.  

Xenon is  an e f f e c t i v e  a n e s t h e t i c  y e t  e x h i b i t s  no o r d i n a r y  chemical  

a c t i v i t y  and e n t e r s  i n t o  no combination except  c l a t h r a t i o n .  
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CLATHRATES IN SEPARATION PROCESSES 

It has  been proposed by Pauling17 t h a t  "micro-crys ta l s"  of  gas  

hydra te  forms i n  t h e  b r a i n  on c e r t a i n  p r o t e i n s  t h u s  i n h i b i t i n g  

t h e i r  func t ion ing .  

t h e  o t h e r  extreme of t h e  a p p l i c a t i o n  s c a l e  involves  c m e r c i a l  

p l a n t s  and processes .  

From t h i s  anes the t ic  and r e s t r i c t e d  a p p l i c a t i o n ,  

D m i n e r a l i z a t i o n  of b r a c k i s h  water  and b r i n e  has  r e c e i v e d  much 

a t t e n t i o n  i n  t h e  p a s t  few y e a r s  i n c l u d i n g  p u r i f i c a t i o n  processes  

involv ing  hydra te  formation.  The work of  Barduhn and co-workers 

has m a t e r i a l l y  broadened t h e  scope of p o t e n t i a l l y  p r a c t i c a l  hydra t -  

ing agents  f o r  t h i s  i n c r e a s i n g l y  important  a p p l i c a t i o n . '  

Krypton, xenon and argon have been f r a c t i o n a t e d  by B a r r e r  and 

Edge using a chloroform h y d r a t e  a s  t h e  prime s e p a r a t i n g  agent .  

F r a c t i o n a t i o n  f a c t o r s  ranged from a low of  3.4 t o  a s  h igh  a s  93.3 
Apparatus and technique a r e  descr ibed  i n  d e t a i l  f o r  f r a c t i o n a t i n g  

p a i r s  of i n e r t  gases .  The s e p a r a t i o n  obtained reversed  normal r e l -  

a t i v e  v o l a t i l i t y  i n  favor  of molecular  s i z e .  P r e f e r r e d  encapsu- 

l a t e d  s p e c i e s  a r e  s p h e r i c a l  molecules .  Thus, argon may be separ -  

a t e d ,  v i a  t h e  proper  h y d r a t e ,  from a i r ,  oxygen o r  n i t r o g e n .  

S e l e c t i v e  hydra te  formation has  been pa ten ted  i n  t h e  separa-  

t i o n  of a propane-propylene system." I n  t h e  d e s c r i b e d  process ,  

propane hydra te  i s  s e l e c t i v e l y  formed and t h e  o l e f i n  i s  enr iched  

i n  t h e  hydrocarbons separa ted  from t h e  hydra te  phase. 

The encapsula ted  s p e c i e s  has  a much lower vapor  p r e s s u r e  than 

t h e  parent  compound. 

hydra te  formed and t h e  i n f l u e n c e  of secondary s t a b i l i z i n g  com- 

pounds. Here a g a i n ,  one f i n d s  a v a r i e t y  of p o s s i b i l i t i e s  f o r  in -  

ducing s e p a r a t i o n s  d i f f i c u l t  t o  achieve  by more convent iona l  means. 

Hydrates ,  i n  g e n e r a l ,  a r e  a type of c l a t h r a t e  s i m i l a r  t o  inor -  

This  w i l l  vary depending upon t h e  type o f  

ganic  molecular  s i e v e s  [ z e o l i t e s ]  i n  s t r u c t u r e .  This  was pointed 

out  i n  Table  I. They d e r i v e  t h e i r  compound s e p a r a t i n g  a b i l i t y  from 

a combination of p r e c i s e l y  t a i l o r e d  molecular  geometry and t h e i r  

a d s o r p t i o n  c a p a c i t y  . 
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MAKIN 

Research of the  w r i t e r  and co-workers has  shown some i n t e r e s t -  

ing and unexpected r e s u l t s  working w i t h  s imple a l ipha t ic -molecules .D 

Model b i n a r y  hydrocarbon systems and hydra tes  were used i n  pre l imin-  

a r y  s t u d i e s  t o  d e f i n e  t h e  p o t e n t i a l  c a p a b i l i t i e s  of  t h i s  s e p a r a t i o n  

t o o l .  

Using t h e  p r e s s u r e  c e l l  i l l u s t r a t e d  i n  F igure  3, t h e  vapor- 

hydra te  e q u i l i b r i a  d a t a  summarized i n  Tables  I V  and V were obta ined .  

A b i n a r y  hydrocarbon feed of i sobutane  and n-butane y ie lded  compar- 

a b l e  enrichment f a c t o r s  and hydrocarbon loading of t h e  hydra te  from 

two r a d i c a l l y  d i f f e r e n t  hydra te  forming s p e c i e s ,  Freon-11 and 

t e t r a h y d r o  furan. 

Thus, t h e  hydra te  forming s p e c i e s  was a p p a r e n t l y  less i n f l u -  

e n t i a l  on t h e  r e s u l t a n t  s e p a r a t i o n  than  t h e  hydrocarbon feed com- 

pos i t ion .  I n  both c a s e s ,  e x c e l l e n t  enrichment of t h e  more compact 

isobutane molecule was obtained.  

TABLE I V  

Freon-11 Hydrate 

I sobutane ,  n-Butane Binary 

-- 

w t . $  Iso- 

butane i n  

Binary Feed 

8.7 
12.2 

29.4 
48.5 
48. 5 
48. 5 
48. 5 
48.5 
91.8 
91.9 

w t . %  Iso- 

butane i n  

Hydrate Phase 

22.0 

24. 1 

49.7 
86.5 
80.5 
86.3 
81.2 

80.2 

95.7 
95.0 

Enrichment 

Fac tor  - 
3.0 

2.3 
2.4 
6.8 
4.4 
6.7 
4.6 
4.4 
2.0 

1.7 

C4 Loading 

w t . $  of 

H y d r a t e  

4.2 
3.6 

5.4 
4.9 

P r e s s u r -  

i z i n g  

Gas -- 
N2 
N2 
N2 
N2 
N2 
He 

He 

He 

N2 
N2 
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CLATHRATES IN SEPARATION PROCESSES 

TABLE V 

Tetrahydrofuran Hydrate 

Isobutane, n-Butane Binary ~- 

W t .  $Y Isobutane W t .  $ I sobutane  Enrichment C4 Loading W t . $  

i n  Binary Feed i n  Hydrate Phase Fac tor  of  Hydrate 

10. g 27.4 2.4 3. 1 
23.8 47.2 6.7 3.8 
44. 3 57.5 6.5 1.7 
78.1 93.0 3.7 4.7 
83. 1 92.4 2.5 3.5 

Figures  6 and 7 d e p i c t  t h e s e  d a t a  i n  a McCabe-Thiele type d i a -  

gram. Enrichment f a c t o r s ,  r e f e r r e d  t o  i n  t h e  foregoing  t a b l e s ,  a r e  

a r b i t r a r i l y  def ined  as ,  

where X and Y a r e  t h e  hydrocarbon b inary  and t h e  s u b s c r i p t s  h and f 

r e p r e s e n t  hydra te  and feed. 

Although o l e f i n  b i n a r i e s  behaved s i m i l a r l y ,  t h e  enrichment  

f a c t o r  f o r  t h e  encapsula ted  s p e c i e s  was lower a s  shown i n  t h e  com- 

p a r i s o n  below f o r  s i n g l e  s t a g e  experiments:  

Hydrat ing 
W t .  $Y Iso-component W t .  $ Iso-component Enrichment 

i n  t h e  Feed Binary ___ i n  Hydrate F a c t o r  Agent 

I sobutene ,  43.9 67.9 2.7 THF 

d 
- 

Isobutene,  45.7 66.7 2.4 F-11 

Isobutane,  48.5 80.5 4.4 F-11 

Isobutene ,  23.8 47.2 3 .8  THF 

%HF and F-11 r e f e r  t o  t e t r a h y d r o f u r a n  and Freon-11 r e s p e c t i v e l y .  
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W I N  

- 
- 

FREON - I I 
HYDRATE SYSTEM 

I .o 

Wf. FRACTION ISOBUTANE IN THE FEED 

Figure 6. 
Freon-11 Hydrate. 

Liquid-Solid Equilibria Curve of Isobutane and 
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WT. FRACTION ISOBUTANE IN THE FEED 
Figure 7. 
Tetrahydrofuran Hydrate. 

Liquid-Solid Equilibria Curve for Isobutane and 
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CLATHRATES IN SEPARATION PROCESSES 

I n  a t e r n a r y  C5 p a r a f f i n  system, t h e  neo s t r u c t u r e  [2,2 d i -  

methyl propane] was p r e f e r e n t i a l l y  encapsulated.  

- wt.5 i n  

Hydrate 

THF - F-11 - Feed - Component 

Neo - pen tane  33.9 58.0 84.9 
Is0 -pen t a n e  31.1 24. 1 8.8 
n- pen t a n e  35.0 17.9 6.3 

Calcula ted  molecular  lengths  f o r  C4 and C5 a lkanes  i n d i c a t e  

that i sobutane  and neopentane, a s  expected,  are comparable a t  

6.72 i. 
I n  a s i t u a t i o n  where compet i t ion  e x i s t s  f o r  t h e  void  space i n  

t h e  c l a t h r a t e  s t r u c t u r e ,  molecular  bulk predominates over  molecular  

l e n g t h  as shown below: 

w t . $  i n  Hydrocarbon 

Component Feed Hydrate b.p. “CI760 mm - 
Propane 24.7 46.4 -42.2 
I sobutane  75.3 53.6 - 10.2 

The above s e p a r a t i o n  wi th  Freon-11 h y d r a t e  a t  4°C and a system 

p r e s s u r e  of  30 p s i g  [ n i t r o g e n ]  i s  a dramat ic  i l l u s t r a t i o n  of  a re- 

v e r s a l  of r e l a t i v e  v o l a t i l i t y .  Thus, t h e  propane molecule having  

e s s e n t i a l l y  t h e  same molecular  l e n g t h  a s  i sobutane  but  w i t h  a much 

s m a l l e r  molecular  d iameter  t h a n  i sobutane  is  much more r e a d i l y  

accommodated i n  t h e  a v a i l a b l e  void  space of  t h e  h y d r a t e  s t r u c t u r e .  

I n  a mixed o l e f i n - p a r a f f i n  C, hydrocarbon system, t h e  charac-  

t e r i s t i c  behavior  a t t r i b u t e d  t o  molecular  l e n g t h  of t h e  hydrocarbon 

i n  b i n a r y  model s t u d i e s  a l r e a d y  d i s c u s s e d  was a g a i n  e v i d e n t  i n  

s i n g l e  s t a g e  e q u i l i b r i a  c e l l  t e s t a .  

399 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



MAKIN 

w t . $  i n  

Hydrate Phase 

F-11 - -- - THF Component Feed 
I 

I sobutane  3.7 7.7 5.0 
n-butane 7.1 3.7 5.5 
1 - bu t e n e  19.0 8 . 3  14. a 
Isobu t e n e  55.8 74.3 62.0 

n-butene [c is  + t r a n s ]  14.4 6.0 12.7 

Here aga in ,  t e t r a h y d r o f u r a n  showed s i g n i f i c a n t  s u p e r i o r i t y  

over  Freon- 11. 

I n  an o l e f i n ,  p a r a f f i n  and d iene  system, t h e  t e t r a h y d r o f u r a n  

h y d r a t e  a p p a r e n t l y  r e j e c t s  butadiene.  This f u r t h e r  s u b s t a n t i a t e s  

t h e  apparent  lack  o f  chemical bonding i n  t h e  c l a t h r a t e  s t r u c t u r e .  

The p o l a r i t y  of  bu tad iene  should enhance s e l e c t i v i t y  of  a THF- 

hydra te  i f  t h e  h y d r a t i n g  a g e n t  was capable  of behaving a s  a s o l -  

vent .  

While t h e s e  i l l u s t r a t i o n s  o f  t h e  molecular  s i e v i n g  p r o p e r t i e s  

of  hydra tes  a r e  n o t  comprehensive, they do f u r n i s h  some i n s i g h t  t o  

t h e  p o t e n t i a l  c a p a b i l i t i e s  of  h y d r a t e  s t r u c t u r e s .  I n  t h e  c a p a c i t y  

of  molecular  s i e v e s ,  h y d r a t e s  o f f e r  s e v e r a l  advantages i n c l u d i n g :  

11 The o r g a n i c  s i e v e  s t r u c t u r e  i s  formed from a n  i n -  

expensive m a t e r i a l  - water. 

21 "Organic" s i e v e s  can be t r a n s p o r t e d  a s  a s l u r r y  

through a r e a c t i o n  system and 

Decomposition and r e g e n e r a t i o n  o f  t h e  s i e v e  s t r u c -  

t u r e  can be accomplished by s m a l l  changes i n  tem- 

p e r a t u r e  and pressure .  

31 

R e l a t i v e l y  mild r e a c t i o n  c o n d i t i o n s  necessary  t o  form hy- 

d r a t e s  make it  p o s s i b l e  t o  use organic  molecular  s i e v i n g  a p p l i c a b l e  

t o  thermal ly  s e n s i t i v e  systems. 
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CLATHRATES IN SEPARATION PROCESSES 

Werezak3* h a s  descr ibed  i n  some d e t a i l  p rocess ing  c h a r a c t e r -  

i s t i c s  and economics of  a h y d r a t e  process  f o r  aqueous s o l u t i o n  

concent ra t ion .  

Coffee e x t r a c t s ,  sucrose  s o l u t i o n s  and d i l u t e  sodium c h l o r i d e  

s o l u t i o n s  were s t u d i e d  i n  some d e t a i l .  Ethylene oxide  was pre-  

f e r r e d  as a h y d r a t e  former due t o  i t s  t o t a l  m i s c i b i l i t y  with t h e  

aqueous s o l u t i o n s  y i e l d i n g  systems t h a t  encouraged homogeneous c ry-  

s t a l l i z a t i o n .  He notes  t h a t  such systems gave l a r g e  h y d r a t e  c ry-  

s t a l s  and low s o l u t i o n  v i s c o s i t i e s .  

The mild process ing  condi t ions  i n  t h e  use of  h y d r a t e  s o l u t i o n  

c o n c e n t r a t i o n  process  s u g g e s t s  o t h e r  a r e a s  of  a p p l i c a t i o n  such a s  

f r u i t  j u i c e  concent ra t ion .  

C. Werner Complex -- 
P o s s i b i l i t i e s  i n  t h i s  a r e a  a r e  a lmost  a s  broad as  imagina t ion  

and ingenui ty  permit. S e p a r a t i o n  of  C 8  a romat ic  isomers  u s i n g  

n i c k e l  t h i o c y a n a t e  based Werner complexes has  been d e s c r i b e d  i n  

p a t e n t s  t o  Union 0i1.24,25 

Complexes of t h i s  type a r e  not r e s t r i c t e d  t o  t h e  s e p a r a t i o n  of  

hydrocarbons nor t o  benzenoid compounds. 

a l l u d e  t o  t h e  use of  v a r i o u s  pyr id ine-base  complexes o f  n i c k e l  

th iocyanate  f o r  s e p a r a t i n g  i somer ic  n i t r o p h e n o l s ,  n i t r o a n i l i n e s ,  

ch loroni t robenzenes  and n i t r o t o l u e n e s .  

1-methyl naphthalene and diphenyl  oxide from mixtures  c o n t a i n i n g  

t h e s e  compounds a r e  a l s o  descr ibed  but  of  even g r e a t e r  i n t e r e s t  i s  

t h a t  complexes were found f o r  p r e f e r e n t i a l l y  e n c a p s u l a t i n g  e a c h  of 

t h e  C 8  a romat ic  isomers. 

S c h a e f f e r  and D o r ~ e y ~ ~  

Separa t ions  of naphthalene,  

I n  t h e  p a t e n t s  t o  Union O i l ,  c i t e d  above, r e f e r e n c e  is  made 

t o  the  s e p a r a t i o n  of i somer ic  ha loa lkanes ,  i somer ic  p h t h a l i c  a c i d s ,  

a l c o h o l s ,  f u n c t i o n a l  d e r i v a t i v e s  of hydrocarbons i n c l u d i n g  0x0, 

carbonyl ,  t h i o  o r  mercapto groups i n  a d d i t i o n  t o  t h e  o t h e r  t y p e s  

mentioned. 
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MAKIN 

While n i c k e l  s a l t s  have a p p a r e n t l y  rece ived  t h e  most a t t e n -  

t i o n ,  manganese, copper, chromium and c o b a l t  d e r i v a t i v e s  a r e  a l s o  

p r e f e r r e d  c a t i o n s .  

DeRadzitsky and Hanotier'  have descr ibed  t h e  p r e p a r a t i o n  of  

n i c k e l  th iocyanate  amine complexes and t h e i r  e n c a p s u l a t i o n  capa- 

b i l i t i e s  f o r  a romat ic  hydrocarbons i n  c o n s i d e r a b l e  d e t a i l .  

The s imples t  method f o r  e v a l u a t i n g  t h e  c l a t h r a t i o n  c a p a c i t y  

and s e l e c t i v i t y  f o r  t h e s e  new Werner complexes found by t h e s e  

a u t h o r s  was t o  form t h e  complex by t i t r a t i o n  of t h e  n i c k e l  t h i o -  

cyanate  with a n  amine. 

pounds t o  be c l a t h r a t e d  t h u s  d e f i n i n g  c a p a c i t y  and s e l e c t i v i t y .  

C l a t h r a t e d  compounds a r e  recovered by decomposition of t h e  

This  was done i n  t h e  presence of  t h e  com- 

c l a t h r a t e  w i t h  a minera l  ac id .  It was noted by t h e s e  a u t h o r s  t h a t  

c l a t h r a t e d  compounds must f i t  t i g h t l y  i n  t h e  voids  of t h e  c r y s t a l -  

l i n e  l a t t i c e  t o  give maximum cohesion with t h e  a i d  of  van d e r  

Waals' forces .  

DeRadzitsky and Hanotier'  noted i n  t h e i r  i n v e s t i g a t i v e  work 

t h a t  one c l a t h r a t i o n  s t a g e  i s  o f t e n  a s  e f f i c i e n t  as a convent iona l  

phys ica l  s e p a r a t i o n  [e .  g., d i s t i l l a t i o n ]  involv ing  hundreds of 

t h e o r e t i c a l  p l a t e s .  Thei r  work i l l u s t r a t e d  t h e  f a c t  t h a t  a lmost  

any aromat ic  isomer could be s e l e c t i v e l y  encapsula ted  by the  proper  

Werner complex. 

Conversely, c y c l i c  compounds der ived  from cyclohexane of  deca-  

l i n  could not  be c l a t h r a t e d .  This was a t t r i b u t e d  t o  e l e c t r o n i c  a s  

well a s  s t e r i c  f a c t o r s .  

The p o t e n t i a l  uae of these i n t e r e s t i n g  compounds i n  t h e  ana- 

l y t i c a l  f i e l d  a s  well  as  i n  removing traces of  a n  u n d e s i r a b l e  

s p e c i e s  from a l a b o r a t o r y  sample o r  a n  i n d u s t r i a l  s t ream i s  appar -  

e n t .  

V I I .  A n a l y t i c a l  Techniques 

The r a p i d  advance i n  t h e  s c i e n c e  of c l a t h r a t e s ,  p a r t i c u l a r l y  

non-s to ich iometr ic  compounds, has  been a t  l e a s t  p a r t l y  due t o  i m -  
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CLATHRATES IN SEPARATION PROCESSES 

provements i n  X-ray c r y s t a l  s t r u c t u r e  a n a l y s i s .  X-ray d i f f r a c t i o n  

f o r  example has  d i f f e r e n t i a t e d  t h e  c r y s t a l  l a t t i c e  of  urea  c r y s t a l -  

l i z e d  from a s o l u t i o n  as a loose  t e t r a g o n a l  s t r u c t u r e  c o n t r a s t e d  t o  

t h e  compact hexagonal s t r u c t u r e  of  urea c r y s t a l l i z e d  from a s o l u -  

t i o n  c o n t a i n i n g  unbranched hydrocarbon chains .  

This  i n d i c a t e s  t h a t  t h e  hos t  compound is a ided  by t h e  g u e s t  

component i n  t h a t  i t  forms the  more compact s t r u c t u r e .  

Methods f o r  a n a l y z i n g  urea complexes by X-ray d i f f r a c t i o n  a r e  

descr ibed  i n  r e c e n t  p u b l i c a t i o n s .  13j20 

X-ray d i f f r a c t i o n  h a s  been s u c c e s s f u l  i n  d e f i n i n g  t h e  proper-  

t i e s  of hydra tes  wi th  r e s p e c t  t o  t h e i r  s e p a r a t i n g  c a p a b i l i t i e s .  

Typica l  d a t a  developed i n  t h i s  l a b o r a t o r y  by X-ray d i f f r a c t i o n  pa t -  

t e r n s  us ing  Cu r a d i a t i o n  on a General  E l e c t r i c  XRD-5 d i f f r a c t o m e t e r  

a r e  shown i n  Table V I .  A Material Research Corpora t ion  low temper- 

a tu re  a t tachment  Model X-8& was used a t  0' t o  minimize h y d r a t e  

decomposition dur ing  a n a l y s i s .  lo 

TABLE VI 

C F C 1 3 - i s 0  C4H10 

CFC13 - Hydrate Hydrate 

C r y s t a l  l a t t i c e  Cubic Cubic 

Unit c e l l  dimension, A 0  = 17.260 + 0.005 f 
Unit  c e l l  volume, V = 5141.9 i3 5121.4 i 3  

Molecules /uni t  c e l l ,  Z = 8 8 

Densi ty  

17.237 + 0.003 8, - 

Determined 

Calcula ted  

Molecular Weight 

Determined 

Calcula ted  

1. 142 1.268 
1.145 1.300 

CFCl,. 17 H20 CFC1, is0 C,Hlo- 17 H20 

442.1 488. g 
443.4 501.4 
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MAKIN 

The e x c e l l e n t  checks between the  c a l c u l a t e d  and determined 

d e n s i t i e s  i n d i c a t e  a high p r e c i s i o n  i n  t h e  de te rmina t ion  of  t h e  

u n i t  c e l l  dimensions. 

Chemical composition a n a l y s i s  of urea  o r  t h i o u r e a  adducts  is 

r e l a t i v e l y  simple. 

washes with a low molecular  weight a l i p h a t i c  o r  a l i c y c l i c  hydrocar-  

bon and d r i e s  t h e  sample under mild c o n d i t i o n s  t o  minimize d i s s o c i -  

a t  ion. 

One merely i s o l a t e s  t h e  c r y s t a l l i n e  s p e c i e s ,  

C o n t r o l l e d  d i s s o c i a t i o n  of  t h e  urea c l a t h r a t e  i n  water f o l -  

lowed by e x t r a c t i o n  and GLC a n a l y s i s  is a l l  t h a t  is requi red .  

Chemical a n a l y s i s  of  h y d r a t e  systems t o  determine loading  of 

t h e  h y d r a t e  and s e l e c t i v i t y  f o r  an encapsula ted  s p e c i e s  involves  

low temperature  f i l t r a t i o n  and GLC e v a l u a t i o n  o f  v o l a t i l e s  recov-  

e red  from a g iven  sample. 

Future  o f l a t h r a t e  Chemistry 

There a r e  numerous c l a t h r a t i n g  t o o l s  a v a i l a b l e  today t o  t h e  

i n v e s t i g a t o r  i n  t h e  f i e l d  of  s e p a r a t i o n  and p u r i f i c a t i o n .  Many 

o t h e r s  awai t  discovery.  

Fur ther  s tudy  is needed t o  b e t t e r  d e f i n e  t h e  mechanism o f  

c l a t h r a t i o n  f o r  improving t h e  i n v e s t i g a t o r ’ s  c a p a b i l i t y  o f  p r e d i c t -  

i n g  encapsula t ion .  

While s t r o n g  chemical bondFng i s  n o t  involved i n  c l a s s i c  

c l a t h r a t e  s t r u c t u r e s ,  van d e r  Waals’ o r  o t h e r  e l e c t r o n i c  a t t r a c t i v e  

forces  may f r e q u e n t l y  be a s s o c i a t e d  with c l a t h r a t i n g  c a p a b i l i t i e s .  

Geometry of  t h e  gues t  molecule is g e n e r a l l y  t h e  c r i t i c a l  c r i t e r i a  

f o r  c l a t h r a t e  formation. 

The choice  of c l a t h r a t i n g  agent  is f r e q u e n t l y  amenable t o  t h e  

thermal  and chemical s t a b i l i t y  of t h e  encapsula ted  s p e c i e s .  

I n c l u s i o n  compounds a r e  now known i n  s e v e r a l  d i f f e r e n t  forms 

ranging  from s p h e r i c a l  c a v i t i e s ,  c a n a l - l i k e  s t r u c t u r e s ,  l a y e r  com- 

p lexes ,  c r y s t a l s  with i n t e r c o n n e c t i n g  chambers and t u b u l a r  s t r u c -  

404 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



CLATHRATES IN SEPARATION PROCESSES 

tures. 

need o r  problem. 

Thus, a wide choice  i s  a v a i l a b l e  t o  accommodate a s p e c i f i c  

Appl ica t ion  of c l a t h r a t e  compounds a s  organic  molecular  s i e v e s  

f o r  s e p a r a t i n g  a mixture o f  molecules on t h e  b a s i s  of d i f f e r i n g  

geometry and f o r  s e r v i n g  as chemical  templa tes  i s  a c o n t i n u i n g  

chal lenge.  

pendent on t h e  geometr ica l  match of t h e  gues t  molecule and t h e  cav- 

i t y  i n  t h e  h o s t  compound, s p e c i f i c  t a i l o r i n g  f o r  a p a r t i c u l a r  need 

w i l l  f r e q u e n t l y  be requi red .  

S ince  t h e r e  are  c l a t h r a t e  s e l e c t i v i t y  r e s t r i c t i o n s  de- 

While t h i s  p h y s i c a l  p r e r e q u i s i t e  imposes r e s t r u c t i o n s ,  i t  a l s o  

s e r v e s  t o  enhance t h e  s e l e c t i v i t y  of a g iven  system. Thus, t h e  

b a s i c  concept  i s  i t s e l f  t h e  fundamental chal lenge.  I n  a n a l y t i c a l ,  

b i o l o g i c a l  and process  i n v e s t i g a t i o n s  - provide t h e  p h y s i c a l  match 

o r  t a i l o r  one t o  f i t  your needs. The f i e l d  i s  unl imited.  
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